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Abmact. A systematized renormalization-groupapproach is present to study systematically 
the physical properties of the one-dimensional systems arranged in the I D  sequence which 
are constructed by the innation rule {A, E}~{A",,E",2,Bmr,Amy}.  A basic decimation 
rule is introduced, which is intuitive, simplified and exact, to investigate the electronic 
properties of the systems which conhin crystals and quasicrystals. As typical examples, 
the spectra of global electronic bands of the 1 0  systems with (m,,,m,,,m,,,mU)= 
(1,1,0, l), (1,1,1, l), and (1,1,2,1) are numerically calculated 

Lattices containing a periodic and quasiperiodic (aperiodic) modulating potential, 
which are called the crystals and the quasicrystals respectively, have received consider- 
able attention [l-71. A most effective theory is the renormalization-group (RG) theory 
which was developed to study the physical properties in periodic and aperiodic lattices 
by Wiecko et a1 [2] Kohmoto et al [3] and Non et al [4]. In recent years, due to the 
aperiodic but regular structure and rich physical properties of aperiodic lattices, it has 
become more important to extend the RG theory to study the physical properties in 
aperiodic lattices. Some typical one-dimensional (ID) aperiodic lattices such as the 
Fibonacci [3,5] and generalized Fibonacci [6] quasicrystals, and the Thue-Morse [7] 
and generalized Thue-Morse [SI aperiodic lattices were extensively studied and several 
separated real-space RG methods have been developed to investigate individually the 
global energy spectra [3,5-8] and the local electronic properties [9]. Lately, a notion 
of approximant crystals has been introduced [ 101 which can be considered as approxi- 
mate systems successively approaching quasicrystals. Because of their very interesting 
physical properties and easy fabrication by the molecular beam epitaxy in these systems, 
the apparent systems have attracted wide attention. Odagaki et al [ l l ]  developed a 
hyperinflation technique to determine systematically the constructions of the ID 
quasiperiodic systems, and used the hyperinflation rule to calculate successfully the 
spectrum of energy bands of the Fibonacci lattice [ 121. Based on the hyperinflation 
rule, we present here a new systematized RG approach to study the physical properties, 
for example the global energy spectrum, of the ID systems which contain the crystals, 
the quasicrystals and other aperiodic lattices. 
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In general, we focus here on the I D  systems which are arranged in the sequences 
constructed by the inflation rule 

B -P B m n A m ~  (1) A -P A'"I ,B"~ 

or by the recursion relation 

with the initial conditions 0," ={A) and Cl,"= { B ) ,  where m,,  , mil ,  m,, and mZ2 are 
non-negative integers, and the symbol '-'denotes shifting of 0: and 0: to one another, 
for instance, (Of) - '  can be written as 0,". Denoting by F;\ and Ff the numbers of 
tiles A and B in the Ith generation 0: and Of, respectively, we obtain from (1) the 
following recursion relations: 

F f i ,  = ~ ~ , , + ~ z l ~ ~ P + ~ ~ 1 2 ~ 2 ~ - ~ l l ~ 2 1 ~ ~ ; \ - ~  (3a) 

F?+, = ( m t l  + m2dF?+(mI2mz2- mllm2JFf-l  (3bf 
with initial conditions F," = 1 and Ff = m , ,  + mt2  for ( 3 a )  and Ft = 1 and Ff = 
m,,+ m2, for (3b) .  Let T be the value to which the ratio F f i , / F f  tends as l+m. From 
relation (3a), T can be given as 

T =K(m,,+ m2d+ blt - mJ+4m12mzz1"2}  (4) 

for the sequence Cl:. For the generalized Fibonacci sequences [6] ,  
( m , , ,  m,, ,  m,, ,  m,,) = (m, n, 0, l ) .  From (4) we have T =  [ m + (  m2+4n)1'2]/Z, and par- 
ticularly T = (1 + a / Z  for the Fibonacci sequence ( m  = n = 1). As to the generalized 
Thue-Morse sequences [SI, (mil, m,, ,  m,, , m,,) = (m, n, n, m) and it follows from (4) 
that T = m+ n. In particular, T = 2 for the Thue-Morse sequence ( m  = n = 1) [7]. 

To deal with the electronic properties of ID  lattices, the Hamiltonian studied is 
often written as the tight-binding model [ 11 

!f =I [ ~ i ) ~ ; ( i ~ + ~ i ) r ~ - , , ~ ( i - ~ ~ + ~ ~ ) t ~ , ; + ~ ( ~ +  111 (5) 
i 

where li) is the Wannierstate centred at site i, the nearest-neighbour coupling parameter 
t i ,  takes rA and t ,  arranged in 0f which is arranged by the periodic lattice, and the 
site energy E; generally takes one of the following five values: 

E, if = ti,+, = r, 

Eo I em if site i is the boundary site of the unit cell 
corresponding to its surrounding environment. The sites possessing the site energies 
E., sa, E?, and E~ are called the sites of types a, p ,  7, S and U, respectively. When 
m,, = 1 and m2, = 0 in particular, the site energies often assume E ~ ,  E@. E? and E- while 
there is no site of type S in the ID lattice with m,, = 1 and m,, = 0. 

For a I D  lattice of which the unit cell Cl,* is constructed by the recursion relation 
(Z), following calculations can be obtained. Transfening the I D  lattice with the unit 
cell Cl: by the decimation rule which is contrary to the inflation rule ( 1 )  (see also 

if t;- , ,;  = la, tr,;+, = ts 

E, = Er if ri-l,i = t,, tj,j+l = ta (6)  
E6 if = = r, 
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figure I),  the renormalized ID sublattice is created, in which the site parameters are 
renormalized as E :  ( i  = a, p, 7, S and U), t k  and ti. The unit cell of the renormalized 
sublattice is a t l  which is also constructed by the recursion relation (2). According 
to the geometric properties of the decimation rule (see figure 2) which is contrary to 
the idation rule (l), a set of RG equations of above transformation is generally given 
from equation (5) as follows 

0 
.I ...... n: 

I I I m n: 

”.... m -...... Rf 

+ *: 
p; 

b 

- 
I. - 

Figurel. ThedecimationforthcunitceliR~ in which(m,,,m,,,m,,,m,,)=(1,1,2,1). 

Flgore 2. Four types of renormalized sites a, 0, y and 8, which arc obtained by the 
application of the decimation rule. (a) a-type renormalized site; ( b )  6-type renormalized 
site; (e) y-type renormalized site; ( d )  &-type renormalized site. 
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where m,, # 0, 1 is the number of i l f s  generation and 

g = ( E  - h = (E - eS)/2fS (sa) 

pi =(E-E~)%,(g) - t , rPl , - l (g)  (86)  

Qi = ( E  -&y)%(g)- tsC-i(g) ( 8 ~ )  

R u = ~ j Q , ( h ) - t S ~ j ( g ) % , - , ( h )  ( 8 4  

W.j= Qi%,(h) - tA%(g)Qj- l (h)  

where QN(X) =sin[(N+ 1) cos-'(X)]/sin[cos~'(X)] is the Nth Chebyshev Poly- 
nomial of the second kind which satisfies the recursion relation 

%N(X) 2x%N-I(x) - % N - Z ( X )  N 3 1  (9) 
with %_,(X) = O  and %,(X) = 1. When m,, = O  in particular, corresponding to the 
decimation rule which is contrary to the inflation rule ( I ) ,  we obtain from equation 
(5) the following set of RG equations: 

if l is an odd integer 

if l is  an even integer 

tARm,,-zm,,-i + tERm,,-i ,m,,-z 

R m X t - l . m r 2 - ~  Rmt,-1.mjx-1 

fARm,,-z.m,,-i + fA%-Z(g) 

Rm,,-i ,m,,-i  %-i(g) 

W e )  

ta= tAtdRm,, -1 .mr2- i  fE = tA/%nZz-l(g) (10f) 

E: = 

in which g, h, P, ,  Qj and R, are given as equations (8a)-(Sd) ,  respectively. 
According to the self-similar properties of the decimation rule which is contrary 

to the inflation rule of the sequence ilf, the ID lattice with the unit cell ilf can be 
reduced to the simple periodic lattice with the renormalized site energy E;  and the 
renormalized coupling parameter tk because all the types of sites a, p, y and S have 
been removed after I transformations. This shows that for an aperiodic system a:, 
many physical properties can be reduced to those of the periodic system (i.e. the I D  

simple crystal), which is easy to study. For instance, the energy spectrum of bands in 
a lattice with unit cell ilf is identical to those in the final renormalized lattice which 
is the simple periodic lattice. According to the Bloch-like formula, the energy spectrum 
of a lattice with the final renormalied parameters E: and ta is determined by the 
solution to the implicit equation 

E=&:+2t~COS(kL) (11) 
where L= F f d  ( d  is the distance between two sites). 
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As typical examples, the spectra of energy bands in the Clfs in which 
(mil, m,,, mzl, mZ2) = (1,1,0, l), (1,1,1,1). and (1, I, 2,l) are calculated numerically 
in figures 3 and 4, respectively. For the well known Fibonacci lattice with (1,1,0, l), 
figure 3(a)  and 3(b) are the spectra of energy bands of Clf and Cl:, respectively, io 
which E, = = E? = eo = 0, and ta/tB = 1.5. One can see that the numbers F$ and F f  
of tiles A and B in Cl;' and Cl: are, respectively, equal to 5 and 8 which are identical 
to the numbers of the energy bands in the spectrum shown in figures 3 ( a )  and 3 ( 6 ) .  
Fortheotherlattices with ( m , , ,  m,?,  m,,, m2,)=(1, 1,1,1) and (1,1,2, l),theirenergy 
spectra of bands are shown in figures 4(a) and 4(b), respectively, in which E , = O  
( i  = a, p ,  y, S and v) and tA/ tB = 1.5. The numbers of the energy bands in the spectrum 
given in figures 4(a)  and 4(6) are equal to the numbers Ff of 8 and 13 of tiles A and 
B in Cl:, respectively. In figure 4(a), it is also shown that the spectrum of energy 
bands in the Thue-Morse system for the off-diagonal tight-binding model are sym- 
metrical at the energy E =O. Comparing figures 3 ( a )  with figure 3 ( 6 ) ,  it is found that 
the number of the bands increases by the recursion relation (3a) and the gaps between 
two nearest-neighbour bands become dense as I increases. These results obtained here 
are similar to those obtained by other RG schemes [3,6]. 

In summary, we have presented a systematized RG approach to study the electronic 
properties of i~systems constructed by theinflationrule{A, B}+{Am"B"", B"'lA"22], 
where m,,, m12, m2, and mZ2 are non-negative integers. By applying the decimation 
rule which is contrary to the above inflation rule, the RG equations corresponding to 
the decimation are obtained and the final renormalized site parameters E !  and tb are 
exactly calculated. This is a much more intuitive, straightforward and exact approach 
to investigate systematically the electronic properties, for instance the spectra of energy 

3 

2 

hL 

1 

-3 - 2  -1  0 1 2 3 
E 

FIgure 3. The energy bands for the lattice with 
(l , l ,O,l) ,  where C ~ = ~ ~ = E ~ = S ~ = O  and IJ tB=  
1.5. (a) Five-bands structure in a:; ( b )  eight-bands 
structure in 0:. 

Figure 4. The energy bands for the lattice with the 
unit cell a:, where s,=O ( i=u,b, 7.6 and U), 
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bands, in ID systems containing crystals and quasicrystals. As typical examples, the 
spectra of energy bands in the ID lattices with (1, 1,0, l), (1, 1, 1, l), and (1,1,2,1) 
are numerically calculated. Some results which are similar to those of other physicists 
are obtained. 

We are indebted to Dr T Odagaki for sending a preprint of his work on the energy 
spectrum of Fibonacci lattice, which motivated the present work. This work has been 
supported by the National Natural Science Foundation of China. 
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